Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Int J Mol Sci ; 24(7)2023 Mar 30.
Article in English | MEDLINE | ID: covidwho-2297409

ABSTRACT

The molecular mechanisms underlying cardiovascular complications after the SARS-CoV-2 infection remain unknown. The goal of our study was to analyze the features of blood coagulation, platelet aggregation, and plasma proteomics in COVID-19 convalescents with AMI. The study included 66 AMI patients and 58 healthy volunteers. The groups were divided according to the anti-N IgG levels (AMI post-COVID (n = 44), AMI control (n = 22), control post-COVID (n = 31), and control (n = 27)). All participants underwent rotational thromboelastometry, thrombodynamics, impedance aggregometry, and blood plasma proteomics analysis. Both AMI groups of patients demonstrated higher values of clot growth rates, thrombus size and density, as well as the elevated levels of components of the complement system, proteins modifying the state of endothelium, acute-phase and procoagulant proteins. In comparison with AMI control, AMI post-COVID patients demonstrated decreased levels of proteins connected to inflammation and hemostasis (lipopolysaccharide-binding protein, C4b-binding protein alpha-chain, plasma protease C1 inhibitor, fibrinogen beta-chain, vitamin K-dependent protein S), and altered correlations between inflammation and fibrinolysis. A new finding is that AMI post-COVID patients opposite the AMI control group, are characterized by a less noticeable growth of acute-phase proteins and hemostatic markers that could be explained by prolonged immune system alteration after COVID-19.


Subject(s)
COVID-19 , Myocardial Infarction , Humans , Proteomics , COVID-19/complications , SARS-CoV-2 , Myocardial Infarction/metabolism , Hemostasis , Inflammation , Plasma/metabolism
2.
Int J Mol Sci ; 23(14)2022 Jul 19.
Article in English | MEDLINE | ID: covidwho-1938840

ABSTRACT

Coronavirus disease 2019 (COVID-19) is characterized by immune activation in response to viral spread, in severe cases leading to the development of cytokine storm syndrome (CSS) and increased mortality. Despite its importance in prognosis, the pathophysiological mechanisms of CSS in COVID-19 remain to be defined. Towards this goal, we analyzed cytokine profiles and their interrelation in regard to anti-cytokine treatment with tocilizumab in 98 hospitalized patients with COVID-19. We performed a multiplex measurement of 41 circulating cytokines in the plasma of patients on admission and 3-5 days after, during the follow-up. Then we analyzed the patient groups separated in two ways: according to the clusterization of their blood cytokines and based on the administration of tocilizumab therapy. Patients with and without CSS formed distinct clusters according to their cytokine concentration changes. However, the tocilizumab therapy, administered based on the standard clinical and laboratory criteria, did not fully correspond to those clusters of CSS. Furthermore, among all cytokines, IL-6, IL-1RA, IL-10, and G-CSF demonstrated the most prominent differences between patients with and without clinical endpoints, while only IL-1RA was prognostically significant in both groups of patients with and without tocilizumab therapy, decreasing in the former and increasing in the latter during the follow-up period. Thus, CSS in COVID-19, characterized by a correlated release of multiple cytokines, does not fully correspond to the standard parameters of disease severity. Analysis of the cytokine signature, including the IL-1RA level in addition to standard clinical and laboratory parameters may be useful to define the onset of a cytokine storm in COVID-19 as well as the indications for anti-cytokine therapy.


Subject(s)
COVID-19 Drug Treatment , Antibodies, Monoclonal, Humanized , Cytokine Release Syndrome/drug therapy , Cytokines , Humans , Interleukin 1 Receptor Antagonist Protein/therapeutic use , Interleukin-6 , SARS-CoV-2
3.
Clin Infect Dis ; 75(1): e1-e9, 2022 08 24.
Article in English | MEDLINE | ID: covidwho-1886385

ABSTRACT

BACKGROUND: During the ongoing coronavirus disease 2019 (COVID-19) pandemic, many individuals were infected with and have cleared the virus, developing virus-specific antibodies and effector/memory T cells. An important unanswered question is what levels of T-cell and antibody responses are sufficient to protect from the infection. METHODS: In 5340 Moscow residents, we evaluated anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immunoglobulin M (IgM)/immunoglobulin G (IgG) titers and frequencies of the T cells specific to the membrane, nucleocapsid, and spike proteins of SARS-CoV-2, using interferon gamma (IFN-γ) enzyme-linked immunosorbent spot (ELISpot) assay. Additionally, we evaluated the fractions of virus-specific CD4+ and CD8+ T cells using intracellular staining of IFN-γ and interleukin 2 followed by flow cytometry. We analyzed the COVID-19 rates as a function of the assessed antibody and T-cell responses, using the Kaplan-Meier estimator method, for up to 300 days postinclusion. RESULTS: We showed that T-cell and antibody responses are closely interconnected and are commonly induced concurrently. Magnitudes of both responses inversely correlated with infection probability. Individuals positive for both responses demonstrated the highest levels of protectivity against the SARS-CoV-2 infection. A comparable level of protection was found in individuals with antibody response only, whereas the T-cell response by itself granted only intermediate protection. CONCLUSIONS: We found that the contribution of the virus-specific antibodies to protection against SARS-CoV-2 infection is more pronounced than that of the T cells. The data on the virus-specific IgG titers may be instructive for making decisions in personalized healthcare and public anti-COVID-19 policies. Clinical Trials Registration. NCT04898140.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Humans , Immunoglobulin G , Prospective Studies
4.
PLoS One ; 16(1): e0246396, 2021.
Article in English | MEDLINE | ID: covidwho-1054891

ABSTRACT

Because of the constantly growing numbers of COVID-19 infections and deaths, attempts were undertaken to find drugs with anti-SARS-CoV-2 activity among ones already approved for other pathologies. In the framework of such attempts, in a number of in vitro, as well as in vivo, models it was shown that hydroxychloroquine (HCQ) has an effect against SARS-CoV-2. While there were not enough clinical data to support the use of HCQ, several countries including Russia have included HCQ in treatment protocols for infected patients and for prophylaxis. In the current non-randomized, observational study we evaluated the SARS-CoV-2 RNA in nasopharynx swabs from infected patients 7-10 days post symptoms with clinically mild disease and compared the viral RNA load dynamics between patients receiving HCQ (200 mg twice per day according to the Ministry of Health of Russian Federation treatment instructions, n = 33) and a control group without antiviral pharmacological therapy (n = 12). We found a statistically significant relationship between maximal RNA quantity and deterioration of patients' medical conditions, and as well we confirmed arterial hypertension to be a risk factor for people with COVID-19. However, we showed that at the dose used in the study HCQ therapy neither shortened the viral shedding period nor reduced the virus RNA load.


Subject(s)
COVID-19 Drug Treatment , COVID-19/physiopathology , Hydroxychloroquine/administration & dosage , SARS-CoV-2/isolation & purification , Viral Load , COVID-19/epidemiology , COVID-19/virology , Humans , Nasopharynx/virology , RNA, Viral/analysis , RNA, Viral/genetics , Russia/epidemiology , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL